Tag Archives: Machine Learning

Canon EOS R5 gets serious about high frame rates!

Canon EOS R5 Slow Motion

We were very skeptical earlier in the year when the R5 specs were just a rumor. Canon has not really been delivering powerful video features out of their Cinema line and we expected this new camera to be a crippled continuation of the trend.  We were not only wrong but now know that Canon is banking the future of the EOS line on cameras like the R5 with features that really put it in a class all by itself.

The original video darling was the EOS 5D Mark II which made it possible to use the EOS line of lenses with a video mode that delivered good enough quality for the web and some careful productions.  The camera had issues like severe rolling shutter and a tendency to moire and alias so bad that many shots were really ruined.  However, the excellent Canon color quality and lens choices made it so popular that it really forced companies to change the video options forever.  Now Canon intends to do as big a splash with the introduction of 8k video internally on the new camera. → Continue Reading Full Post ←

Panasonic Lumix S1 180fps Slow Motion Is Pretty Good!

Panasonic Lumix S1 180fps Slow Motion

As it was initially unveiled at Photokina last year, the Panasonic Lumix S1 and S1R cameras are their answer to the domination of larger sensors in stills and video mirrorless cameras. Is there any reason now to buy a Full Frame DSLR when mirrorless is so advanced? The only thing we can think of is to have marginally longer battery life. The mirror is on its last legs and fans better start offloading their lenses if they don’t want to mess with adapters. In the case of Panasonic however, it is not possible to use Lumix  Micro 4/3 lenses on the Leica/Sigma/Panasonic Full Frame L-Mount.

The S1 and S1R will both shoot up to 180fps 1080p video with a crop that may or may not be impactful. Seems the S1R has less crop on 1080p than the video geared S1 which is an odd spec. We will have to wait for more samples and info on the HFR mode to see which of these cameras offers the best slow motion performance. From the limited samples, we can say that the quality looks very good and at least on par with the Lumix GH5 at 120fps. → Continue Reading Full Post ←

Google Pixel 3 Slow Motion is Lackluster!

Google Pixel 3 Slow Motion

The newly announced Google Pixel 3 and 3 XL phones do impressive things with machine learning when it comes to their camera app. The ability to do resolution comparable 2X  zoom to an optical lens by using exposure merging is genius.  Their portrait mode is also the best ever made on a phone with incredible separation of background and foreground depth of field based on learning algorithms that can tackle hair transitions and other objects all with only a single lens.

When it comes to video however it is not as good as either the Samsung’s or Apple’s latest flagship phones. The pixel tops at 4k 30p and the slow motion while doing 240fps which matches the iPhone XS it is only 720p instead of 1080p. Google seems to have beefed up the phone for still images and selfies and left the video features on a secondary plane. The slow motion mode is essentially identical to last year’s Pixel 2 and 2 XL at 120fps 1080p and 240fps 720p. → Continue Reading Full Post ←

NVIDIA Slow Motion Interpolation With AI Deep Learning Tech!

NVIDIA Slow Motion Interpolation

NVIDIA has been hard at work on the problem posed by high frame rate interpolation of video data shot on lower fps.  We have had this tech since the late 1990s with the advent of Twixtor and refined over the decades in systems like Twixtor Pro and Adobe’s Optical Flow in After Effects. You are still not getting real temporal detail data since the frames are created by extrapolating velocity and direction vectors plus pixel values between frames to get the result.

We explored this technique in our post on interpolation here and why it is no substitute from a real slow motion camera solution.  NVIDIA’s new method uses machine learning along with 11,000 videos to arrive at a more convincing result. Considering the relatively small sample size we can imagine a future where hundreds of thousands or millions of footage samples are used to generate near flawless interpolation. This technique takes some serious computation and data sets so as of now it is not really ready for the mass market but that could change with the cloud very soon. → Continue Reading Full Post ←